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THE EFFECT OF ASYMMETRY ON THE GYRATIONS OF A 
BALLISTIC MISSILE DESCENDING THROUGH THE ATMOSPHERE 

» 

by 

G. S. Green, M.A. 

/O    <J< 

SUMMARY 

This paper investigates mathematically the effect on the pitch-yaw 

oscillations of a spinning re-entry body, which will arise as a consequenoe 

of the body having a small amount of asymmetry. 

It shows how this effect can be related to an equivalent re-entry 

disturbance for a corresponding symmetrical body. 

Some numerical checks, obtained on a digital calculating machine, are 

included, as substantiation of the mathematical thoory. 
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1 INTRODUCTION 

The oscillatory motion of a spinning body, descending through the earth's 
atmosphere, has been the subject of a fair amount of theoretical research over 
the last few years. The problem is to derive expressions, preferably reason- 
ably simple ones, which will define the oscillatory motion in terms of two 
groups of parameters. 

(1) the body's inherent characteristics - mass, moments of inertia, 
aerodynamic derivatives, etc., 

(2) the flight conditions at re-entry - velocity, spin rate, the 
body's orientation, etc. 

This is an important issue, because the oscillatory motion of a re-entry 
body has various practical repercussions. It governs, for example, the magni- 
tude of the lateral loading experienced by the body during descent and this may 
be a critioal design feature. It is also essential to have a theoretical 
insight into this problem in order to evaluate flight data (e.g. accelerometer 
recordings) obtained during a re-entry trial, as for example with Black Knight. 

In Ref.1, the re-entry oscillation problem is treated more comprehensively, 
so it is believed, than elsewhere. There are inevitably, however, various 
additions and refinements which might in principle be made. One in particular 
which has occasionally given rise to speculation, is what would happen if the 
re-entry body were not quite symmetrical. Ref.1 assumes a perfectly symmetrical 
body which is, of course, normally the designer's intention, but, in practice, 
there may well be some departure from this. The present paper deals with the 
problem of calculating the effect on the oscillatory motion which will result 
from such asymmetry. 

It i3 not difficult to see that thi3 might well be important. Any 
asymmetry in a spinning body will constitute a forcing input at the spin fre- 
quency, this frequency being substantially constant throughout. The natural 
frequency of the body's oscillations, however, increases steadily during re- 
entry (until a time shortly before ground level) due to the growth of the 
dynamic pressure, ipV ,in the aerodynamic forces. Almost always this natural 
frequency varies during descent from well below the spin rate to well above it. 
The system passes, therefore, through a state of resonance. As is well known, 
if a forcing condition at or near resonance of an oscillating system is main- 
tained, large amplitudes of motion will ensue. The general issue which arises 
in the present problem is to discover how the response of a forced oscillatory 
system is modified by the continuous state of flux of some of the system's 
parameters. 

2 MATHEMATICAL DEFINITION OF THE PROBLEM 

Asymmetry in a re-entry vehicle can take different forms  (c.f. Ref.2). 
We are concerned here with aerodynamic asymmetry,  that is to say a case in 
which the roll inertial axis  is inclined at a small angle (e)  to the 
aerodynamic axis.    The moments of inertia in pitch and yaw are equal. 

- 3 - 
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We follow the same approach as in Ref.1, so that, as seen from in front 
with small perturbations we have the situation:- 

a 

e\*p- Pt 
1\] 

a 

Li 
I 

Perturbed traj. 

i 

fc~t>r 

Basic traj. 

a aerodynamic axis 

i inertial axis 

a,p components of incidence of inertial axis 

Y,(3 angular perturbation components  of the trajectory 

q,r angular rate components of inertial axis 

e angle between a and i 

A roll moment of inertia 

B pitch (or yaw) moment of inertia 

m mass 

P spin rate 

The equations of angular motion of the inertial axis are:- 

m    q+ ir - a- ip L =    -|pVSC i a- IB + 
'aL 

ee iPt (D 

B q+ ir -  i AP q+ ir    = -gpV2S£ [°-a(a- 
iPt iPt\ I i£ + ee       ] + C     [ q+ ir + iePe' 

...   (2) 
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These equations correspond to (7) and (8) in Ref.1, with the additional terms 
in the aerodynamic forces arising from the asymmetry.    We now eliminate q+ ir, 
to obtain a differential equation in a- i(3. 

As is brought out in Ref.1,  various terms appear which are  quite 
negligible in practice.    Retaining only terms of numerical significance, we 
obtain:- 

CT         e
2C                                                £pV2S€C ipVSC. 

jpVS ^- ^ - i TJ + a- 1(3 ^ i f "~^r-J 

=    —j-aee^*. (3) 

a- i(3 + a- ip 

This  is the counterpart of equation (12)  in Ref.1,  the asymmetry appearing on 
the right-hand side of the equation. 

During a re-entry descent,  the velocity is substantially constant until 
the lower regions of the atmosphere are reached, whilst the air density builds 
up exponentially with loss of height.    For much of the descent,  therefore, 
p  takes the form 

Kt p    =    p    e (p  , K are constants)   . 

Restricting the investigation to this case,  in equation (3) we replace 
Kt p by pQ e 

4pV2S£C 
2 mq .        2   Kt 

w      =    __ by WQ e 

C
T *2°m 

1   iro /      a . q\     . Kt a   m  _pVS ^_ . _aj  by % e 

cT      i
2c 

L_ m_s Kt 
e b    =    i,pVS ( — + —ir2-)   by b 

^r      V   m B    J o 

We  then arrive at the differential equation 

- 5 - 
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a- ij3+a- ip 
Kt      . AP + a- ip 2 Kt       .  AP /        .   v Kt we      - i —— la  + b  )e 

o 2B v 0      o' •]•• 
2 Kt iPt 

eco e    e      . 
o 

This is the equation whose solution is required. 

3 MATHEMATICAL SOLUTION OF THE PROBLEM 

We make a ohange of variables 

... U) 

Kt 

T = e2   ,    a- ip = Tiv e 

a T 
o 
2K AP 

where     v = — 

and we write x.f 

Then equation (4)  transforms, mathematically into 

T
2 dja      T drj 

dT2 dT 

2 2 

LK2 

2a T' 
o 

K2 

2ib 

K 

o    AP T2 
B 

u 
0        /.   y 

K 

-    . e ^0 T2+i(2X-v) e    2    i 
K 

a T 
0 I 
2K (5) 

3.1      Special case of no damping or lift 

It will simplify the mathematical development of the solution of the 
general equation if we consider first the special  case in which there is 
neither aerodynamic damping nor lift,  namely the case in which the aerodynamic 
forces on the body consist solely of a restoring moment.    In this case,  a    and 

b    are both zero and equation (5) becomes 

T2 djQ      T dn 

dT2 dT 

2 2 

-V - dvv 
K 

w 
t)    =    - e o T2+i(2\-v) 

K 
(6) 

Now make the further substitution 
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= z 

in which case  the equation becomes 

2 a -n       an 

dz 
dz 

"2      ,.   s2 z    - (iv) n    =    - e 
2u> 

K 

-i(2\-v) 
2+i(2X-v) (7) 

If this differential oquation had zero on the right-hand side,  it would, 
of course,  be of the standard Bessel's equation form,  of order iv.    As it is, 
it can be identified as one of a number which have a close affinity with 
Bessel's form and which,  at some  time,  have received attention by 
mathematicians.    Equation (7)  is of the form involving Lommel's functions, 
(page 40, Vol.2 Ref.3,  or page 345, Ref.4.) 

The complete solution of oquation (7) will inevitably involve arbitrary 
J .   (z).    However,  let us look at a particular amounts  of the functions J.   (z), 

solution,   (equation (69), page 40, Vol.2,  Ref.3) 

,2(0 
-2iX+iv 

71    =    " ^"K2) S1+2i\-iV,  iv(z> (8) 

S. _.. .  . (m\  is a Lommel function, z being the ourrent variable. The other 1+2i\-iv, i v v*' ' 
quantities, which are constants, play a roll akin to the order in normal 
Bessel's functions. 

Lommel's functions (of this kind) are not tabulated anywhere, as far as 
the present writer can discover, so that one cannot proceed by consulting 
tables. However, some of their mathematical properties have been explored, 
including how they behave for either small or large values of the argument, z, 
which properties are particularly useful in the present context. 

By taking the same functional form of the solution (8) and considering 
in turn its behaviour for small (z), large altitude and large (z), small altitude, 
we can link the initial re-entry motion at very high altitude including a 
determination of the arbitrary pre-entry motion, with the final stages of re- 
entry motion at low altitude though being unable to analyse mathematically the 
motion in between. We will therefore evaluate the two cases of low and high 
z in turn. 

3.1.1  Small values of z (large altitude) 

Let us look first at small values of z, corresponding to the initial 
stages of the re-entry problem when the altitude is large. 

- 7 - 
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The  's'  function can then be expanded in ascending powers of z. 

Equation (8)  then leads to 

T) = -e 

2u> 
 c 

K 

-2iX+iv 2+2iX-iv A+2iX-iv 

_22(l+iX-iv)(l+iX)      24(l+iX-iv)(l+iX)(2+iX-iX)(2+iX) 

If we now write co T = w,  this reduces to 

a- ip = - e 
,2iX 
T   |_(l+iX-iv)Cl+iX) " (1+iX-iv)(1+iX)(2+iX-iv)(2+iX) + *'* * 

...(9) 

2iP 
2iX    K    iPt 

The term T   = T   = e   represents simply a rotation at the spin rate, P. 
It means that equation (9), with this term removed, gives the motion referred 
to missile-fixed axes. 

Employing a suffix, m, to indicate reference to missile axes, we have 

a - iB = 
m  rm - e (1+iX-iv)(l+iX) " (l+iX-iv)(l+iX)C2+iX-iv)(2+iX) + " (10) 

w, which is the natural frequency of the missile in pitch under aerodynamic 
foroes, gradually increases from zero during re-entry. Hence, the solution 
we have arbitrarily chosen represents the case in which the missile's inertial 
axis is lined up, initially, with the flight direction, and commences its 
movement away under the effect of the growing, asymmetric, aerodynamics. 

Equation (10) shows this in a typical case, to be of the following form:- 

v, 
v 

-Pm 
- 8 - 
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The first term in the bracket dominates initially.     In the most common 
case, X is much larger than either 1  or v. 

In these circumstances, 

a    - iS    ^ - e m m , ^ 

-.2 

-X   + 2iX      X 

e   /'co\2 /.       2i\ w2 /' 2i 
-vr) (I*T) • E7V1+" 

showing that the response,  on missile axes,   starts  off (for large X)  at an 
angle 2/X to the vector defining the asymmetry. 

3.1.2      Larpe values of  z (low altitude) 

Now we turn to the situation when z is large,   corresponding to the 
later stages of re-entry,  when the altitude is much reduced. 

We are dealing of course with the same solution,  as defined by 
equation (8).    Now we wish to expand in descending powers of z. 

To do  this,  we note  that  (equation 7»  page 40,  Ref.3) 

s1+2iX-iv,iv^    "    S1+2iX-iv,i/Z) 

02iX-iv r(l+iX)r(l+iX-iv) [ K /.   «...   „.   \T       /   \ 
-2 —»—'"'77^".       cos - (1+2iX-2ivJJ ^(z; sin x%v -XV 

cos 2 (i+2i\)j.   (z) 
2 IV (11) 

'S'   is an alternative form of Lommel function,  readily expandable in desoending 
powers.    T is  the gamma function,   J Bessel's function. 

For large z, 

1+2iX-iv,ivN   ' 
2iX-iv "        2iX 2i(X-v) 

1       "" r\ +      .  .   •  • 
z 

i , 1%     %v . in      %v 

I %      i%v \ 1 
J  •.AZJ'N'   —       cos [ z - — + —r-      =    ——r    ( 

ITS      iw . x%      %\> 
1Z . _xz +        + 

Tie + e 

- 9 - 
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When these expressions are substituted into (ll), we obtain, after a 
little algebraic simplification, 

81+2iX-iv,iv
(z> - z 

2iX-iv 
1 +   2 

z   —i 

i2 2iX-iv 
+ i£—-^  r(l+iX)r(l+i\-iv) 

(2KZ)
2 

1%       I . 
rlz+T * \x • z e    ^ e        + e 

.iz+^  -«(x.^ 

... (12) 

Thus from equation (8), and remembering that 

a- i|3 = T   T|,    z = ~    etc.,    we obtain 

a- i|3 eT 2iX 

l—        u> 

,_*£ /trX2iX-iv rw(x - 
ft© @ r(i+ix)r(i+ix-iv) [a 

(fi+f + ? 

+   8 6 

... (13) 

Equation (13)  represents  the situation which ensues at low altitudes. 
The first term represents a vector which is locked to missile axes,  and 
rapidly shrinking onto -e.    The remainder represents two vectors,  rotating 

AP at rates — ± u> in relation to space axes,  and shrinking in inverse proportion 

to vw. 

In general this is as far as the mathematical development can be taken, 
and tables of gamma functions can be consulted for numerical values. However, 
it frequently happens that X is much larger than 1 (or v) and in that case 
approximations to the gamma functions can be made. 

- 10 - 
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The standard approximation is:- 

for large X, log r(X) - (X - i)log X - X + £ loga2K  . 
6 06 

Thus, r(l + iX) ~ ^2K\ e 
X(log X-1) --^ +|j 

r(i+ix-iv) ~ \/&i(x-v) e   2 L. 2^-^    4-J 

On substituting these expressions into equation (13) we obtain, after a little 
simplification, 

a - i(3 ~ - e j 1   +-2(1   - ^ V w 

ipt     na        r Hi2 4 
+ e     *       ' | e 

-*(2X-v) • 1 (- f< • » + #k.**> 

where 

<t> = X log 2X+ (X-v)  log 2(X-v)  - 2X+ v- 2X 
1    7. 

2(X-v) + 4 
7 - (2X-v) log 

/2u) 

... (14) 

r' 

The equations (14) define the orientation of the inertial axis at low 
altitudes for large X (say >10), for the case in which this axis had zero 
displacement from the flight direction initially. 

iPt 
These expressions refer to space axes.  Deletion of the terms e   gives 

a - i(3 , the incidence in relation to missile axes, 
m  rm' 

3.2  General case including damping and lift 

We return now to the more general case in which damping and lift terms 
are retained, the appropriate differential equation being equation (5), and 
seek a solution along similar lines to the classical mathematics of the above 
special case. 

- 11 - 
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2aoT 

In tiie t) term in that equation, ——s— will always, in practice, be very 

&y K 
small in relation to  ?  , and will therefore be neglected. 

K 

We proceed with 

dT2     dT   LW2 ?^T2 
2 4 

a TT 
0 

K2 
- (iv)' 

a T 
0 

. e 2° T2+i(2X-v) e 2K 
K2 

4to 

(15) 

and make the substitution, 

^0      21bo   AP\T2 

K2    "    K2       B 
=    z 

We then obtain 

2 d_n dn 
5    —?i + z r-1 + 

dz dz 
2 

z    - 

2V2 4 
a K z 

0  

(V - 2ib    f V     o 0  B 

- (iv) 
2 

aoK 2 
" z AP ~      -i(2X-v) '/".   2    ... 

z (16) 

to a sufficient accuracy. 

If we let    c = • 
a K o r rrzr    this  equation becomes, 

2(*V2ibo   B 

- 12 - 
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2 d2r, dn 
z    —^ +  z T-* + 

dz2 dz 

"2,24      /.   N2" 
z  - 4c  z   - (IV) 

-      -i(2X-v) „ 
""oN 2+i(2X-v)     oz2 

Tl = ~e[ —) e 

... (17) 

This  is the counterpart to equation (7)  in Section 3«1«    The term 
2 4 4c z    in the coefficient of n is negligible, in a typical re-entry case,  in 

comparison with z . It is best retained, however, since it assists the 
mathematical development. 

3.2.1  Ascending powers of z 

Following the lines of Section 3»"l» we seek first a solution in 
ascending powers of z corresponding to Lommel's function, s. Denoting the 
corresponding function by "s, and writing u = 1+i(2\-v), we can devise 

o 
cz f-  u+1     u+3    u+5 

s = e   I a,zr  + a,z^  + a^z   + < • • 

in which 

&A     =     o a. i + itakt^ 
1    (|i+l)

2-(iv)2     3     [(u+l)
2-(iv)2][u+3)

2-(iv)2] 

a , M + 4c(u+2)Hl + 4c(u+4)]  • etc 
5   C(u+1)

2- (iv)2][(u+3)
2- (iv)2][(^+5)

2- (iv)2] 

,fe "i(2X-v) 

Thus *>  =  -e(lf) W-iv,iv<«> <18> 

corresponding to the case in which the inertial axis is lined up initially 
with the flight direction. 

3.2.2  Descending powers of z 

Here we seek a form of solution to equation (17) corresponding to 
Lommel's function S. Denoting this by S, we can obtain 

- 13 - 
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2        „ r ao      a, 
S   =    e        zr        a    + —*+-?+... L' o       2       4 

z        z 

in which 

*o    "    1+4cu  '        a2 "    " [l+4cuJ[l+4c(u-2)J 

a4 [ 1 +4cu] [1 +4c(n-2) J [1I+4c(u-4) J    '        tC 

-i(2X-v) 
/2(i) 

Thus» n - - «f-r J 8. w. ,u . ,(z) K J 1+2i\-iv,iv> 

providing a convenient form of solution for large z. 

3.2.3      Complementary function 

We require a suitable form for the complementary funotion of equation (17)» 
i.e.  the solution when the right-hand side is set to zero,  and explore the 
form 

2 oz 
X]    =    e 

r     r r+2 r+4 a z    + anz        + a. z        +..... |_o 2 4 J 

By substitution in (17)> it is found that 

r = +iv or r = -iv 

a    arbitrary a    arbitrary 

a [1 + 4c(iv+1)] a [1 + 4c(-iv+l)3 

&2 "        (iv+2)2-(iv)2 &2 '       (-iv+2)2-(-iv)2 

a [l + 4c(iv+l)][l + 4c(iv+3)] a [1 + 4o(-iv+1 )][1 + 4c(-iv+3)] 
a,   = o       •      o " ' „        '    o '     Qi   = _ 

[(iv+2)2-(iv)2][(iv+4)2-(iw)2]      4      [(-iv+2)2-(-iv)2][(-iv+4)2-(-iv)2] 

etc. etc. 

- 14 - 
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Thus,  the two  solutions  of this form can be written 

A    e
Cz2 aiV fl  - tl + Wiv+l)3z2 + Jj_t^c.(i^l)][l + 4c(iv+?)324 m        ^        (19) 

1 I 22(iv+l)   |l_ 24(iv+l)(iv+2)  |_2_ '  J 

0 0 ) 

A    ecz    z~ivfl  -  [l + 4c(-iv+l)jz    + [l + 4o(-iv+l)3[n-4o(-iv+3)3z    ...  1 (2o) 
2 L 22(-iv+l) |_1. 24(-iV+l)(-iV+2)   [2 "J 

where A    and A_ are arbitrary constants. 

As in the standard Bessel case  (corresponding to c = 0), we take 

A      =   •-?—• " ,      A      =      ,.       ) -.    (cf.  nef.4,p.40) 
2XV r(iv+l) £ 2 xv r(-iv+l) 

2 L. 
Now, in re-entry applications the quantity c is quite small, and also c z is 

2 
always quite small in relation to z . Thus for the range of z in which we are 
interested, equation (17) with the right-hand side set to zero is sensibly 
equivalent to the standard Bessel form of order iv, and the complementary 
function solutions found can be identified for our purpose as J. (z) and 

J . (z) respectively. 

3.2.4  Complete solution 

The solution in which we are interested is as given by equation (18) 
since this corresponds to zero initial displacement. We require now to 
express s in terms of S and the complementary function J.  and J . • This r     *        iv    -iv 
will be the counterpart in the more general case to equation (11) in the 
special case, and will enable an asymptotic value to the solution to be found. 
This in turn will be used to explore what happens to the motion in the later 
stages of re-entry. 

It is a matter of algebra to show that there is an analogous relation 
to equation (11), viz:- 
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S1+2i\-iv,iv^z) =^1+2i\-iv,iv(Z) 

_ 2
2ix"iv r(ui\)rh+ix-iv) 

sin i*v 7~T5+iX-^T 
A8°    2 

uJ-+i-±* 
8\l!iX2/ooS|(l + 2iX-2i,) J.iv(.) 

(8c) 

^^^cosl(l+2iX)Jiv(Z) (21) 

where expression (19) and (20) are used for J.   (z),  J_,  (is)  in this case 
•iv' 

As in Section 3*1*2, in order to proceed further with the mathematical 
development it is necessary to approximate to the gamma functions. This is 
quite feasible, since in practice, 'c1 is quite small and l/o quite large. 

Using the standard approximation for the T-function of a large quantity, 
it is straightforward to show that for Y large, and much larger than z 

P(Y+iz) ~ Y"     / Y S *-fc • >• (log • - k 

By making use of this formula,  it can be demonstrated that 

1 *(fc»i*») 
(8c) 1+iX 

8c ~- + i + iX - iv 
2 

a K 

2w 

(8c) 1+iX-iv 

[X(X-v)+ i(-2X+v)] 

~   e 

Also from Section 3.2.2, we have, for large z, 

B1+2iX-iv,iv(z) ~e°!     ** 
1 JLLU=I 

1+4cu     I 1+4CUJ[I+4C(U-25J  Z2 
+ ° ^ _ 

_    cz2    i(2X-v) ~ e z "i .. id. 2^ A . *^ + iafcal 
2co        2u>      \ 

o o 
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Hence,   [c.f.   equation (12),  Section 3«1»2] 

- ,   \ oz      i(2X-v) 
sU2iX-iv,iv(z) ~ e        Z 

i—       a K      ia K / \ , •> /,     v 
1  - ~2 " TT ( X - 2 ) +        2^ 

L        2(0        2(0 \ / z        _l a o 

a K 
o 

.   i(2X-v) 2con 

-r— r(l+i\)r(l+iX-iv) e 

—j [x(X-v)+i(-2X+v)] 

(2*z): 

iz+M   ^X-|)        -!.•—    -,^-J 
+  e 

...   (22) 

Recalling that 

n    =    - e 
2o,r 

K 

-i(2X-v) 

l) 

a T 
o 

.fl _iv    "    2K a- ip    =    T      e r\   , 

2 2 
K z ^ - 2ibo f\ J 

and using approximations to  the functions T(l+iX),  r(l+iX-iv)  as in Section 
3.1.2 we can find the asympotic value of a-ip  corresponding to late stages of 
re-entry. 

This comes out to be 

a-ip e 

0 0 0 

iPt 

a KX(X-v) 

+ e Wx-v) 2co 
o 2K e 

a       bv       .  ( 2x> 
2oo T * \K 

bv 

+  e 
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where 4>    =    X log 2X + (X-v) log 2(X-v) - 2X + v - ~ -    J    v  + J 

a K b Kv 
- (2X-v) log (m * -** (-2X+v) + -V    . (24) 

0 0 

This is the mathematical solution of the problem, subject to oertain 
restrictions on the size of some of the quantities involved (see Section 4)» 
It is the more general form of equation (lA-)> the effect of damping and lift 
introducing the extra terms in a, b, a , b . 

4    PRACTICAL IMPLICATIONS 

We have found [equations (23) > (24)] the angular motion of an asymmetric 
spinning body, occurring at low altitudes, as a consequence of its inherent 
asymmetry. As appears later in this paragraph, this i3 the most suitable form 
for an appraisal of the practical implications of asymmetry. For equations 
(23) and (24) to be valid, two conditions must be satisfied:- 

a   b 
(a)  damping and lift must be relatively small, i.e. -^ , -* must be 

small, in comparison with unity, 

(b)  X / — ) must be large in comparison with unity. 

For all typical re-entry cases, the former condition, (a), is well satisfied. 
For condition (b), it is sufficient if X is greater than about 10, and this 
is frequently the case in re-entry applications. If it should happen that X 
is much less than this, it would be necessary to go back to equation (22) and 
evaluate the r-functions from suitable tables. 

The effect of asymmetry, as per equation (23), consists, in the later 
stages of re-entry, of two parts 

(1) a steady displacement of the inertial axis of amount 

00 0 

in relation to missile axes. 

This is approximately equal and opposite to the aerodynamic asymmetry. 

(2) a motion consisting of two rotating vectors of exactly the same 
type as the normal symmetrical missile undergoes. 

- 18 - 
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If e  is  small,  as is supposed,  then constituent (l)  is also  small.    Interest, 
in practice,  centres on constituent (2).    Of this the component vector which 
rotates in the same sense as the missile spins will be much larger than the 

counter rotating vector,  since the latter involves the factor e    * . 

The feature of principal interest,  therefore,  is the vector 

a KX(\-V) 

  „ 2 a       bv       . (2a)       ,\ 
SS55I     2u)o     " 2K + T* + i vT + V 

0 © e 

Now,  it is shown in Ref.1,  that if a symmetrical missile has a simple 
precessional motion of magnitude S_„  prior to re-entry,  then its motion during 

re-entry will be given by 

  a       bv       .  /2o> 

SEj2B^e ^ 

These two expressions are of the same form*    Hence,  by equating them, 
we oan express the effect of asymmetry in terms of an equivalent motion, prior 
to re-entry for a symmetrical missile 

a K\(\-v) 

2 
2w AP o 

SL      ££    =    e  e ° TCKX(X-V) 3E^2B    '    e  e J 

a K\(\-v) 
o 

2 

Therefore ^    =    e      **° fISE3     . (25) 

For this relationship to be valid, the further condition that v must not 
be less  than about unity must be satisfied.    This is usually so in practice. 

Rewritten in terms  of basic design parameters equation (25) becomes 

tf>2(cr2C      - c     )   (1  - A/B) 
 a q         

„ " " 2KV.p C   
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where 

C. | C , C   = aerodynamic derivatives of lift, pitch damping, and static 
a   q   a     pitching moment 

•6 = reference length 

cr = non-dimensional radius of gyration in pitch, i.e. ratio of 
pitch radius of gyration to reference length 

P = spin rate 

A,B =   moments of inertia of re-entry missile in roll, pitch 

V„ =    re-entry velocity 

Kt 
K given by air density variation, p - p e 

o 
e =    asymmetry in missile 

S_ =    equivalent re-entry perturbation for symmetrical missile 

Equation (26) is the principal practical result of the present enquiry. 
It defines the situation in which the missile finds itself after passing 
through resonance, and expresses it in terms of the equivalent re-entry dis- 
turbance for a symmetrical body. 

It is interesting to note that the presence of damping (and lift) in 
the re-entry missile increases the magnification factor (as defined). For 
positive lift, pitch damping, and static pitching moment, CT     is positive, 

a 
C      and C      negative,  so that the exponential term in (26)  consists of 'e'  to 

q a 
a positive power, and this is,   of course,  greater than 1. 

It will usually be the case, however,  that the exponent of 'e'  will be 
fairly small - a value of 01  to 0*2 would be  typical of ourrent design 
practice - so that the contribution of the exponential term in (26) will 
frequently not be very important. 

The main effect will generally come from the remaining term in equation 

(26), namely   |2x—(7-1).    In current designs this tends to be of the order 

of 30 to l+0»    This means, therefore,  that if such a re-entry missile is asym- 
metric to the extent of 1° angular difference between the aerodynamic and 
inertial axes and it has no precession,  the effeot on the incidence in the 
later re-entry stages is the same as  if the missile were symmetric but had a 
re-entry incidence in the form of a precession of 30° to 40° semi-angle 
round the flight path. 
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5    NUMERICAL CHECK ON THEORETICAL RESULTS 

It was considered desirable to check the validity of the foregoing 
theoretical analysis for one or two particular cases. For this purpose, a 
digital calculating machine was programmed to solvs the basic differential 
equation, (4). There is one minor difficulty which had to be overcome - not 
in the programming as such, but in feeding in appropriate initial conditions. 
The mathematical solution corresponds to initial conditions 

ip = a-i(3 = 0   at   t = -co . 

To overcome this, values for a- i§, a- ip were calculated for a later time, 
appropriate to the very early stages of re-entry, from the expression for 
s (or s), and the digital calculation proceeded from there. 

Fig.1 shows the digital machine output for three particular cases, with 
progressively increasing damping. For each of them 

P = 20, K = 1, A/B = 0 . 

The damping corresponds to 

a b a b a b 
0 _£ o , 0 0 o 0 1 

2 2 2 2 2 4    » 2 2 
CO CO CO (0 CO CO 

0 o o 0 0 0 

the lift coefficient being zero in each case. 

The first one is the case of zero damping. The other two are equivalent 
to rather more damping than current re-entry designs normally possess, but it 
was desired to accentuate the effect. 

The mathematical solution, as per equations (23), (24), was checked 
against the digital machine results. The agreement is virtually perfect for 
co/P greater than 1*5, and is still very good for u>/P as low as 1 *3» 

Other cases were subjected to the same check, with different values of 
A/B and damping and lift. They present the same general appearance, and 
confirmation of the mathematical theory. 

6    CONCLUSION 

A mathematical solution, in convenient form, has been derived for the 
effect on the angular disturbance of a spinning re-entry missile, which will 
result from its having a small amount of asymmetry. 
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The solution ia readily applicable in practice, since in the post- 
resonance region on which interest usually centres, the effect is simply 
related to the case of the corresponding symmetrical missile. 

NOTATION 

A,B moments of inertia in roll and pitch (or yaw) 

a,b parameters defining damping and lift, Section 2 

c parameter relating, inter alia, damping, lift and frequency 

Kt 
K parameter defining variation of air density with time, p =p e 

i, aerodynamic reference length 

m mass 

P spin rate 

q,r pitch, yaw angular rates 

S aerodynamic reference area 

5,3 J 

3,3 

s 

T 

Lommel functions (usually with two suffixes) 

Kt 
2 

t time 

V re-entry velocity 

CT   .C ,C          aerodynamic derivatives 
L * a * m                J 

a     a      q 

o,p missile incidence components 

Y»6 trajectory deflection angular components 

e missile asymmetry 

X P 
K 

1  + i(2X-v) 

AP 
BK 
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